A triviality result for semilinear parabolic equations

نویسندگان

چکیده

We show a triviality result for "pointwise" monotone in time, bounded "eternal" solutions of the semilinear heat equation $ \begin{equation*} u_{t} = \Delta u + |u|^{p} \end{equation*} $ on complete Riemannian manifolds dimension n \geq 5 with nonnegative Ricci tensor, when p is smaller than critical Sobolev exponent \frac{n+2}{n-2} $.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining nodes for semilinear parabolic equations

We discuss the uniqueness of the equilibria of time-global solutions of general semilinear parabolic equations by a finite set of values of these solutions. More precisely, if the asymptotic behaviour of a time-global solution is known on an appropriate finite set, then the asymptotic behaviour of a time-global solution itself is entirely determined in a domain.

متن کامل

Matematica – Existence for semilinear parabolic stochastic equations

Abstract The boundary value problem for semilinear parabolic stochastic equations of the form dX − ∆X dt + β(X)dt 3 QdWt, where Wt is a Wiener process and β is a maximal monotone graph everywhere defined, is well posed.

متن کامل

A Strong Regularity Result for Parabolic Equations

We consider a parabolic equation with a drift term u+b∇u−ut = 0. Under the condition divb = 0, we prove that solutions possess dramatically better regularity than those provided by standard theory. For example, we prove continuity of solutions when not even boundedness is expected.

متن کامل

Blowup Rate Estimate for a System of Semilinear Parabolic Equations

In this paper, we study the blowup rate estimate for a system of semilinear parabolic equations. The blowup rate depends on whether the two components of the solution of this system blow up simultaneously or not.

متن کامل

Optimal Control of Nonsmooth, Semilinear Parabolic Equations

This paper is concerned with an optimal control problem governed by a semilinear, nonsmooth operator differential equation. The nonlinearity is locally Lipschitz-continuous and directionally differentiable, but not Gâteaux-differentiable. Two types of necessary optimality conditions are derived, the first one by means of regularization, the second one by using the directional differentiability ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics in engineering

سال: 2022

ISSN: ['2640-3501']

DOI: https://doi.org/10.3934/mine.2022002